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NOTE 

Numerical Computation of Electric and Magnetic Fields 
in a Uniform Waveguide of Arbitrary Cross Section 

The author has recently written a computer program that numerically solves 
for the electric and magnetic fields in a uniform waveguide of arbitrary, simply 
connected cross section1 While this program accomplishes the same objective 
as that of a computer program by Davies and Muilwyk [l], the algorithm is quite 
different. 

Either the axial electric field of a TM mode or the axial magnetic field of a TE 
mode can be represented by # in the equation 

when appropriate boundary conditions are applied ([2], p. 316). For a TM mode, 
the electric field equals zero at the waveguide boundary; for a TE mode, the 
derivative of the axial magnetic field normal to the waveguide boundary equals 
zero. An approximation to 4, #, is computed numerically at a number of interior 
points arranged in a rectangular pattern within the walls of the waveguide. The 
points in the rectangular pattern that are nearest the waveguide wall are taken to 
be boundary points. The partial derivatives in (1) are replaced by finite-difference 
approximations ([3], p. 162). Then for each interior point, P, not adjacent to a 
boundary point, we have 

4& - #A - *B - VL - h = 4P > (2) 

where t/~~ is taken at P; z,bR, h, #L , and #R are taken at interior points above, 
below, to the left, and to the right of P. Equations that apply to interior points 
adjacent to boundary points differ somewhat from (2) in order to approximate 
the boundary conditions mentioned above. In (2) 

T = (kc/Q2 = (F)“’ (3) 

1 This program is written in ALGOL for the Burroughs B-5500 computer. The author will be 
glad to mail either a program listing, or a more extensive description of the algorithm upon 
request. 
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where h is the spacing between adjacent interior points and X, is the cutoff wave- 
length. This system of equations is linear in # and can therefore be expressed in 
matrix vector from as 

Au = TV, (4) 

where A is a square matrix defined by (2) and the boundary conditions, and v 
is a vector whose elements are the values of Z/ at all the interior points. 

From (4) we see that we have an algebraic eigenproblem to solve, and that each 
eigenvalue of A, and its eigenvector correspond to a waveguide mode. Furthermore, 
the eigenvalue T can be used with (3) to compute the cutoff wavelength, and the 
eigenvector v defines the axial electric or magnetic field of the mode at all interior 
points. Because the TE and TM modes have different axial field boundary con- 
ditions, their matrices differ, even for the same waveguide cross section, step 
spacing, and set of boundary points. Because the modes of greatest interest in 
engineering and scientific applications are the dominant TE and TM modes, the 
program computes only these modes, which correspond to the lowest eigenvalues 
of the appropriate matrices and their eigenvectors. (The program can be modified 
for computation of higher waveguide modes as well.) 

The program works only for positive-definite matrices. While the matrices used 
for the TM modes are positive-definite (see below), a matrix which would be used 
to compute a TE mode axial magnetic field over a full waveguide cross section 
is singular. For this reason the program only computes TE modes for the wave- 
guides having a plane symmetry along which the axial magnetic field of the 
dominant TE mode is zero. 

In all, the program uses matrices of three types: (a) for the TM-mode axial 
electric field over the entire waveguide cross section; (b) for the TM-mode axial 
electric field over one-half the cross section of a symmetric waveguide; and (c) 
for a TE-mode axial magnetic field over one-half the cross section of a symmetric 
waveguide. Matrices of all three types are symmetric, sparse, irreducibly diagonally 
dominant, and positive-definite ([3], p. 23, Definition 1.7), and their lowest eigen- 
values are simple.2 

ALGORITHM 

The eigenvector of the lowest eigenvalue is computed by an algorithm discussed 
by Wilkinson ([4], p. 142). A sequence of vectors, xu), is computed by 

(A - ,51)x(i+l) = $i) i = 1, 2, 3..., x(l) = (1, 1, l),..) I), (5) 

z The author can provide proofs of these matrix properties. 
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FIG. 1. 

where T, is a real constant for which 

I 71 - 7, I -=c I 79 - Q-2 I j>l 
and 
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(6) 

are the eigenvalues of A. Then the sequence xti) converges to an eigenvector 
corresponding to T1 , and since 71 is simple, this eigenvector is uniquely determined 
by A. To compute T1 , we derive from (5) that 

(7) 

The algorithm consists of the following steps in sequence. 

(1) The boundary points are computed automatically on the basis of the 
waveguide cross section and step spacing read in. 

(2) The constant T, is determined to be less than 71 , but close enough to 
it to produce a rapid convergence of the eigenproblem algorithm described above. 
For TM modes, 7, is computed automatically; for TE modes it is read in.3 

(3) The matrix (A - ~$1) and then the lower triangular matrix L are com- 
puted, where 

A - Tzz = LLT. (8) 

8 If r3: as read in is too large, so that 72 > TI , then (A - T,Z) is not positive-definite, and the 
matrix L in (8) cannot be computed. In this case, the computer automatically reduces 7z to 0.9 
of its previous value, prints a message to this effect, and repeats the computation of L. 
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For (8) we use the facts that the matrix (A - TJ) is symmetric (since A is sym- 
metric) and positive-definite (since 7, < pi). 

Only the elements of L (which is sparse) not known to be zero are stored in com- 
puter memory. (LT need not be stored.) 

(4) Equation (5) is solved repeatedly using the triangular matrix L. That is, 
we solve for i = 1,2, 3..., 

Ly’i’ = $0 9 (9) 

~T~‘i+l’ = p 
, (10) 

which are derived from (5) and (8). This process is terminated when 

is less than some predetermined amount, where 

and a is a scalar for which 

11 ux(i+l) llm = 1. 

The last vector of the sequence is used as the eigenvector; the last two vectors are 
used with (7) to compute the eigenvalue 7r . 

(5) Using the computed TV , the cutoff wavelength is computed from (3). 

(6) The program provides for automatic plotting of the waveguide outlines 
and transverse field lines. 

PROGRAM OUTPUT 

Figure 1 shows the waveguide field plots obtained in four of the test cases. 
Fig. la and lb give the dominant TE and TM modes, respectively, in circular 
waveguides; Figures lc and Id give the dominant TE modes in two ridged wave- 
guides. Transverse magnetic field lines are shown in the TM-mode plot; transverse 
electric field lines are shown in the TE-mode plots. In these test runs, between 100 
and 150 interior points were used. In the tests on the dominant TE and TM modes 
in rectangular and circular waveguides, the maximum difference between the com- 
puted cutoff wavelengths and those obtained from the analytic formulas is 0.3 %. 
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